Relativity

Trace Metric Solution

Solutions with trace metrics where \(g_{\mu\nu} \ne 0\;if \mu = \nu\) have fewer non-zero Christoffel symbols. This solution only applies to metrics which only have dependent variables \(r\) and \(\theta\).

Define the metric.

\[g_{tt} = T(r,\theta) \quad g^{tt} = \frac{1}{T}\]
\[g_{rr} = R(r,\theta) \quad g^{rr} = \frac{1}{R}\]
\[g_{\theta\theta} = \Theta(r,\theta) \quad g^{\theta\theta} = \frac{1}{\Theta}\]
\[g_{\phi\phi} = \Phi(r,\theta) \quad g^{\phi\phi} = \frac{1}{\Phi}\]

Calculate Christoffel Symbols

For the \(t\) symbols, \(\lambda = t\) and for non-zero terms \(\rho = t\).

\[\Gamma^t_{\mu\nu} = \frac{1}{2}g^{tt}\left(\frac{\partial g_{\mu t}}{\partial\nu} + \frac{\partial g_{\nu t}}{\partial\mu} - \frac{\partial g_{\mu\nu}}{\partial t}\right)\]

The third term is zero as there is no time dependency.

\[\Gamma^t_{\mu\nu} = \frac{1}{2}g^{tt}\left(\frac{\partial g_{\mu t}}{\partial\nu} + \frac{\partial g_{\nu t}}{\partial\mu}\right)\]

The only non-zero solutions are \((\mu = t, \nu = r)\), \((\mu = r, \nu = t)\), \((\mu = t, \nu = \theta)\), and \((\mu = \theta, \nu = t)\).

\[\Gamma^t_{tr} = \Gamma^t_{rt} = \frac{1}{2}g^{tt}\frac{\partial g_{tt}}{\partial r} = \frac{1}{2T}\frac{\partial T}{\partial r}\]
\[\Gamma^t_{t\theta} = \Gamma^t_{\theta t} = \frac{1}{2}g^{tt}\frac{\partial g_{tt}}{\partial\theta} = \frac{1}{2T}\frac{\partial T}{\partial \theta}\]

For the \(r\) symbols, \(\lambda = r\) and for non-zero terms \(\rho = r\).

\[\Gamma^r_{\mu\nu} = \frac{1}{2}g^{rr}\left(\frac{\partial g_{\mu r}}{\partial\nu} + \frac{\partial g_{\nu r}}{\partial\mu} - \frac{\partial g_{\mu\nu}}{\partial r}\right)\]

The only non-zero solutions are \((\mu = r, \nu = \theta)\), \((\mu = \theta, \nu = r)\), \((\mu = \nu = t)\), \((\mu = \nu = r)\), \((\mu = \nu = \theta)\), and \((\mu = \nu = \phi)\).

\[\Gamma^r_{r\theta} = \Gamma^r_{\theta r} = \frac{1}{2}g^{rr}\frac{\partial g_{rr}}{\partial\theta} = \frac{1}{2R}\frac{\partial R}{\partial\theta}\]
\[\Gamma^r_{tt} = -\frac{1}{2}g^{rr}\frac{\partial g_{tt}}{\partial r} = -\frac{1}{2R}\frac{\partial T}{\partial r}\]
\[\Gamma^r_{rr} = \frac{1}{2}g^{rr}\frac{\partial g_{rr}}{\partial r} = \frac{1}{2R}\frac{\partial R}{\partial r}\]
\[\Gamma^r_{\theta\theta} = -\frac{1}{2}g^{rr}\frac{\partial g_{\theta\theta}}{\partial r} = -\frac{1}{2R}\frac{\partial \Theta}{\partial r}\]
\[\Gamma^r_{\phi\phi} = -\frac{1}{2}g^{rr}\frac{\partial g_{\phi\phi}}{\partial r} = -\frac{1}{2R}\frac{\partial \Phi}{\partial r}\]

For the \(\theta\) symbols, \(\lambda = \theta\) and for non-zero terms \(\rho = \theta\).

\[\Gamma^\theta_{\mu\nu} = \frac{1}{2}g^{\theta\theta}\left(\frac{\partial g_{\mu\theta}}{\partial\nu} + \frac{\partial g_{\nu\theta}}{\partial\mu} - \frac{\partial g_{\mu\nu}}{\partial\theta}\right)\]

The only non-zero solutions are \((\mu = r, \nu = \theta)\), \((\mu = \theta, \nu = r)\), \((\mu = \nu = t)\), \((\mu = \nu = r)\), \((\mu = \nu = \theta)\), and \((\mu = \nu = \phi)\).

\[\Gamma^\theta_{r\theta} = \Gamma^\theta_{\theta r} = \frac{1}{2}g^{\theta\theta}\frac{\partial g_{\theta\theta}}{\partial r} = \frac{1}{2\Theta}\frac{\partial \Theta}{\partial r}\]
\[\Gamma^\theta_{tt} = -\frac{1}{2}g^{\theta\theta}\frac{\partial g_{tt}}{\partial\theta} = -\frac{1}{2\Theta}\frac{\partial T}{\partial\theta}\]
\[\Gamma^\theta_{rr} = -\frac{1}{2}g^{\theta\theta}\frac{\partial g_{rr}}{\partial\theta} = -\frac{1}{2\Theta}\frac{\partial R}{\partial\theta}\]
\[\Gamma^\theta_{\theta\theta} = \frac{1}{2}g^{\theta\theta}\frac{\partial g_{\theta\theta}}{\partial\theta} = \frac{1}{2\Theta}\frac{\partial \Theta}{\partial\theta}\]
\[\Gamma^\theta_{\phi\phi} = -\frac{1}{2}g^{\theta\theta}\frac{\partial g_{\phi\phi}}{\partial\theta} = -\frac{1}{2\Theta}\frac{\partial \Phi}{\partial\theta}\]

For the \(\phi\) symbols, \(\lambda = \phi\) and for non-zero terms \(\rho = \phi\).

\[\Gamma^\phi_{\mu\nu} = \frac{1}{2}g^{\phi\phi}\left(\frac{\partial g_{\mu\phi}}{\partial\nu} + \frac{\partial g_{\nu\phi}}{\partial\mu} - \frac{\partial g_{\mu\nu}}{\partial\phi}\right)\]

The only non-zero solutions are \((\mu = \phi, \nu = r)\), \((\mu = r, \nu = \phi)\), \((\mu = \phi, \nu = \theta)\), and \((\mu = \theta, \nu = \phi)\).

\[\Gamma^\phi_{\phi r} = \Gamma^\phi_{r\phi} = \frac{1}{2}g^{\phi\phi}\frac{\partial g_{\phi\phi}}{\partial r} = \frac{1}{2\Phi}\frac{\partial \Phi}{\partial r}\]
\[\Gamma^\phi_{\phi\theta} = \Gamma^\phi_{\theta\phi} = \frac{1}{2}g^{\phi\phi}\frac{\partial g_{\phi\phi}}{\partial\theta} = \frac{1}{2\Phi}\frac{\partial \Phi}{\partial\theta}\]

Christoffel Symbols

The non-zero Christoffel symbols are:

\[\Gamma^t_{tr} = \Gamma^t_{rt} = \frac{1}{2}g^{tt}\frac{\partial g_{tt}}{\partial r} = \frac{1}{2T}\frac{\partial T}{\partial r}\]
\[\Gamma^t_{t\theta} = \Gamma^t_{\theta t} = \frac{1}{2}g^{tt}\frac{\partial g_{tt}}{\partial\theta} = \frac{1}{2T}\frac{\partial T}{\partial\theta}\]
\[\Gamma^r_{r\theta} = \Gamma^r_{\theta r} = \frac{1}{2}g^{rr}\frac{\partial g_{rr}}{\partial\theta} = \frac{1}{2R}\frac{\partial R}{\partial\theta}\]
\[\Gamma^r_{tt} = -\frac{1}{2}g^{rr}\frac{\partial g_{tt}}{\partial r} = -\frac{1}{2R}\frac{\partial T}{\partial r}\]
\[\Gamma^r_{rr} = \frac{1}{2}g^{rr}\frac{\partial g_{rr}}{\partial r} = \frac{1}{2R}\frac{\partial R}{\partial r}\]
\[\Gamma^r_{\theta\theta} = -\frac{1}{2}g^{rr}\frac{\partial g_{\theta\theta}}{\partial r} = -\frac{1}{2R}\frac{\partial \Theta}{\partial r}\]
\[\Gamma^r_{\phi\phi} = -\frac{1}{2}g^{rr}\frac{\partial g_{\phi\phi}}{\partial r} = -\frac{1}{2R}\frac{\partial \Phi}{\partial r}\]
\[\Gamma^\theta_{r\theta} = \Gamma^\theta_{\theta r} = \frac{1}{2}g^{\theta\theta}\frac{\partial g_{\theta\theta}}{\partial r} = \frac{1}{2\Theta}\frac{\partial \Theta}{\partial r}\]
\[\Gamma^\theta_{tt} = -\frac{1}{2}g^{\theta\theta}\frac{\partial g_{tt}}{\partial\theta} = -\frac{1}{2\Theta}\frac{\partial T}{\partial\theta}\]
\[\Gamma^\theta_{rr} = -\frac{1}{2}g^{\theta\theta}\frac{\partial g_{rr}}{\partial\theta} = -\frac{1}{2\Theta}\frac{\partial R}{\partial\theta}\]
\[\Gamma^\theta_{\theta\theta} = \frac{1}{2}g^{\theta\theta}\frac{\partial g_{\theta\theta}}{\partial\theta} = \frac{1}{2\Theta}\frac{\partial \Theta}{\partial\theta}\]
\[\Gamma^\theta_{\phi\phi} = -\frac{1}{2}g^{\theta\theta}\frac{\partial g_{\phi\phi}}{\partial\theta} = -\frac{1}{2\Theta}\frac{\partial \Phi}{\partial\theta}\]
\[\Gamma^\phi_{\phi r} = \Gamma^\phi_{r\phi} = \frac{1}{2}g^{\phi\phi}\frac{\partial g_{\phi\phi}}{\partial r} = \frac{1}{2\Phi}\frac{\partial \Phi}{\partial r}\]
\[\Gamma^\phi_{\phi\theta} = \Gamma^\phi_{\theta\phi} = \frac{1}{2}g^{\phi\phi}\frac{\partial g_{\phi\phi}}{\partial\theta} = \frac{1}{2\Phi}\frac{\partial \Phi}{\partial\theta}\]

Geodesics

The geodesic equations are:

\[\frac{d^2x^\lambda}{d\tau^2} + \Gamma^\lambda_{\mu\nu}\frac{dx^\mu}{d\tau}\frac{dx^\nu}{d\tau} = 0\]

Expand the \(\lambda = t\) geodesic.

\[\frac{d^2x^t}{d\tau^2} + \Gamma^t_{\mu\nu}\frac{dx^\mu}{d\tau}\frac{dx^\nu}{d\tau} = 0\]

Expand the non-zero \(\Gamma\) terms.

\[\frac{d^2t}{d\tau^2} + \Gamma^t_{tr}\frac{dt}{d\tau}\frac{dr}{d\tau} + \Gamma^t_{rt}\frac{dr}{d\tau}\frac{dt}{d\tau} + \Gamma^t_{t\theta}\frac{dt}{d\tau}\frac{d\theta}{d\tau} + \Gamma^t_{\theta t}\frac{d\theta}{d\tau}\frac{dt}{d\tau} = 0\]

Substitute and rearrange.

\[\frac{d^2t}{d\tau^2} + \frac{1}{T}\frac{dt}{d\tau}\left(\frac{\partial T}{\partial r}\frac{dr}{d\tau} + \frac{\partial T}{\partial\theta}\frac{d\theta}{d\tau}\right) = 0\]

Expand the \(\lambda = r\) geodesic.

\[\frac{d^2x^r}{d\tau^2} + \Gamma^r_{\mu\nu}\frac{dx^\mu}{d\tau}\frac{dx^\nu}{d\tau} = 0\]

Expand the non-zero terms.

\[\frac{d^2x^r}{d\tau^2} + \Gamma^r_{tt}\frac{dx^t}{d\tau}\frac{dx^t}{d\tau} + \Gamma^r_{rr}\frac{dx^r}{d\tau}\frac{dx^r}{d\tau} + \Gamma^r_{\theta\theta}\frac{dx^\theta}{d\tau}\frac{dx^\theta}{d\tau} + \Gamma^r_{\phi\phi}\frac{dx^\phi}{d\tau}\frac{dx^\phi}{d\tau} = 0\]

Substitute and rearrange.

\[\frac{d^2x^r}{d\tau^2} + \frac{1}{2R}\left[\frac{\partial T}{\partial r}\left(\frac{dx^t}{d\tau}\right)^2 + \frac{\partial R}{\partial r}\left(\frac{dx^r}{d\tau}\right)^2 + \frac{\partial \Theta}{\partial r}\left(\frac{dx^\theta}{d\tau}\right)^2 + \frac{\partial \Phi}{\partial r}\left(\frac{dx^\phi}{d\tau}\right)^2\right] = 0\]

Expand the \(\lambda = \theta\) geodesic.

\[\frac{d^2x^\theta}{d\tau^2} + \Gamma^\theta_{\mu\nu}\frac{dx^\mu}{d\tau}\frac{dx^\nu}{d\tau} = 0\]

Expand the non-zero terms.

\[\frac{d^2x^\theta}{d\tau^2} + \Gamma^\theta_{r\theta}\frac{dx^r}{d\tau}\frac{dx^\theta}{d\tau} + \Gamma^\theta_{\theta r}\frac{dx^\theta}{d\tau}\frac{dx^r}{d\tau} + \Gamma^\theta_{tt}\frac{dx^t}{d\tau}\frac{dx^t}{d\tau} + \Gamma^\theta_{rr}\frac{dx^r}{d\tau}\frac{dx^r}{d\tau} + \Gamma^\theta_{\theta\theta}\frac{dx^\theta}{d\tau}\frac{dx^\theta}{d\tau} + \Gamma^\theta_{\phi\phi}\frac{dx^\phi}{d\tau}\frac{dx^\phi}{d\tau} = 0\]

Substitute and rearrange.

\[\frac{d^2x^\theta}{d\tau^2} + \frac{1}{2\Theta}\left[ \frac{\partial\Theta}{\partial r}\left(\frac{dx^r}{d\tau}\frac{dx^\theta}{d\tau} + \frac{dx^\theta}{d\tau}\frac{dx^r}{d\tau}\right) - \frac{\partial T}{\partial\theta}\left(\frac{dx^t}{d\tau}\right)^2 - \frac{\partial R}{\partial\theta}\left(\frac{dx^r}{d\tau}\right)^2 + \frac{\partial \Theta}{\partial\theta}\left(\frac{dx^\theta}{d\tau}\right)^2 - \frac{\partial \Phi}{\partial\theta}\left(\frac{dx^\phi}{d\tau}\right)^2 \right] = 0\]

Expand the \(\lambda = \phi\) geodesic.

\[\frac{d^2x^\lambda}{d\tau^2} + \frac{1}{\Phi}\left[ \frac{\partial \Phi}{\partial r}\frac{dx^\phi}{d\tau}\frac{dx^r}{d\tau} + \frac{\partial \Phi}{\partial\theta}\frac{dx^\theta}{d\tau}\frac{dx^\phi}{d\tau} \right] = 0\]

Geodesic Equations

\[\frac{d^2t}{d\tau^2} + \frac{1}{T}\frac{dt}{d\tau}\left(\frac{\partial T}{\partial r}\frac{dr}{d\tau} + \frac{\partial T}{\partial\theta}\frac{d\theta}{d\tau}\right) = 0\]
\[\frac{d^2x^r}{d\tau^2} + \frac{1}{2R}\left[\frac{\partial T}{\partial r}\left(\frac{dx^t}{d\tau}\right)^2 + \frac{\partial R}{\partial r}\left(\frac{dx^r}{d\tau}\right)^2 + \frac{\partial \Theta}{\partial r}\left(\frac{dx^\theta}{d\tau}\right)^2 + \frac{\partial \Phi}{\partial r}\left(\frac{dx^\phi}{d\tau}\right)^2\right] = 0\]
\[\frac{d^2x^\theta}{d\tau^2} + \frac{1}{2\Theta}\left[ \frac{\partial\Theta}{\partial r}\left(\frac{dx^r}{d\tau}\frac{dx^\theta}{d\tau} + \frac{dx^\theta}{d\tau}\frac{dx^r}{d\tau}\right) - \frac{\partial T}{\partial\theta}\left(\frac{dx^t}{d\tau}\right)^2 - \frac{\partial R}{\partial\theta}\left(\frac{dx^r}{d\tau}\right)^2 + \frac{\partial \Theta}{\partial\theta}\left(\frac{dx^\theta}{d\tau}\right)^2 - \frac{\partial \Phi}{\partial\theta}\left(\frac{dx^\phi}{d\tau}\right)^2 \right] = 0\]
\[\frac{d^2x^\lambda}{d\tau^2} + \frac{1}{\Phi}\left[ \frac{\partial \Phi}{\partial r}\frac{dx^\phi}{d\tau}\frac{dx^r}{d\tau} + \frac{\partial \Phi}{\partial\theta}\frac{dx^\theta}{d\tau}\frac{dx^\phi}{d\tau} \right] = 0\]

Ricci Tensor

The Ricci tensor is quite complex, but symmetrical. It makes extensive use of the Einstein summation convention. Given that the metric tensor is symmetric, it is easy to miss a summation term and lose a factor of two.

\[R_{\mu\nu} = \frac{\partial}{\partial\nu}\Gamma^\lambda_{\mu\lambda} - \frac{\partial}{\partial\lambda}\Gamma^\lambda_{\mu\nu} + \Gamma^\lambda_{\mu\eta}\Gamma^\eta_{\nu\lambda} - \Gamma^\lambda_{\lambda\eta}\Gamma^\eta_{\mu\nu}\]

It it is trace then \(\nu = \mu\).

\[R_{\mu\mu} = \frac{\partial}{\partial\mu}\Gamma^\lambda_{\mu\lambda} - \frac{\partial}{\partial\lambda}\Gamma^\lambda_{\mu\mu} + \Gamma^\lambda_{\mu\eta}\Gamma^\eta_{\mu\lambda} - \Gamma^\lambda_{\lambda\eta}\Gamma^\eta_{\mu\mu}\]

The Ricci \(R_{tt}\) Term

\[R_{tt} = \frac{\partial}{\partial t}\Gamma^\lambda_{t\lambda} - \frac{\partial}{\partial\lambda}\Gamma^\lambda_{tt} + \Gamma^\lambda_{t\eta}\Gamma^\eta_{t\lambda} - \Gamma^\lambda_{\lambda\eta}\Gamma^\eta_{tt}\]

The first term is zero as there are no time dependencies.

Expand the second term given that \(\Gamma^t_{tt} = 0\) and there is no dependency on \(\phi\).

\[-\frac{\partial}{\partial\lambda}\Gamma^\lambda_{tt} = -\frac{\partial}{\partial r}\Gamma^r_{tt} -\frac{\partial}{\partial\theta}\Gamma^\theta_{tt} = \frac{1}{2}\left[ \frac{\partial}{\partial r}\left(\frac{1}{R}\frac{\partial T}{\partial r}\right) + \frac{\partial}{\partial\theta}\left(\frac{1}{\Theta}\frac{\partial T}{\partial\theta}\right) \right] = \frac{1}{2}\left[ \frac{1}{R}\frac{\partial^2 T}{\partial r^2} - \frac{1}{R^2}\frac{\partial R}{\partial r}\frac{\partial T}{\partial r} + \frac{1}{\Theta}\frac{\partial^2 T}{\partial\theta^2} - \frac{1}{\Theta^2}\frac{\partial \Theta}{\partial\theta}\frac{\partial T}{\partial\theta} \right]\]

Expand the third term \(\lambda\) terms.

\[\Gamma^\lambda_{t\eta}\Gamma^\eta_{t\lambda} = \Gamma^t_{t\eta}\Gamma^\eta_{tt} + \Gamma^r_{t\eta}\Gamma^\eta_{tr} + \Gamma^\theta_{t\eta}\Gamma^\eta_{t\theta} + \Gamma^\phi_{t\eta}\Gamma^\eta_{t\phi} = \Gamma^t_{tr}\Gamma^r_{tt} + \Gamma^t_{t\theta}\Gamma^\theta_{tt} + \Gamma^r_{tt}\Gamma^t_{tr} + \Gamma^\theta_{tt}\Gamma^t_{t\theta} = 2(\Gamma^t_{tr}\Gamma^r_{tt} + \Gamma^t_{t\theta}\Gamma^\theta_{tt}) = -\frac{1}{2T}\left(\frac{1}{R}\left(\frac{\partial T}{\partial r}\right)^2 + \frac{1}{\Theta}\left(\frac{\partial T}{\partial \theta}\right)^2\right)\]

Expand the fourth term \(\eta\) terms.

\[-\Gamma^\lambda_{\lambda\eta}\Gamma^\eta_{tt} = -\Gamma^\lambda_{\lambda r}\Gamma^r_{tt} - \Gamma^\lambda_{\lambda\theta}\Gamma^\theta_{tt} = -(\Gamma^t_{tr} + \Gamma^r_{rr} + \Gamma^\theta_{\theta r} + \Gamma^\phi_{\phi r})\Gamma^r_{tt} - (\Gamma^t_{t\theta} + \Gamma^r_{r\theta} + \Gamma^\theta_{\theta\theta} + \Gamma^\phi_{\phi\theta})\Gamma^\theta_{tt} = \frac{1}{4R}\frac{\partial T}{\partial r}\left( \frac{1}{T}\frac{\partial T}{\partial r} + \frac{1}{R}\frac{\partial R}{\partial r} + \frac{1}{\Theta}\frac{\partial \Theta}{\partial r} + \frac{1}{\Phi}\frac{\partial\Phi}{\partial r} \right) + \frac{1}{4\Theta}\frac{\partial T}{\partial \theta}\left( \frac{1}{T}\frac{\partial T}{\partial \theta} + \frac{1}{R}\frac{\partial R}{\partial \theta} + \frac{1}{\Theta}\frac{\partial \Theta}{\partial \theta} + \frac{1}{\Phi}\frac{\partial\Phi}{\partial \theta} \right)\]

Combine the terms terms.

\[R_{tt} = \frac{1}{2R}\frac{\partial^2 T}{\partial r^2} + \frac{1}{2\Theta}\frac{\partial^2 T}{\partial\theta^2} - \frac{1}{4TR}\left(\frac{\partial T}{\partial r}\right)^2 - \frac{1}{4R^2}\frac{\partial T}{\partial r}\frac{\partial R}{\partial r} - \frac{1}{4T\Theta}\left(\frac{\partial T}{\partial \theta}\right)^2 - \frac{1}{4\Theta^2}\frac{\partial T}{\partial\theta}\frac{\partial\Theta}{\partial\theta} + \frac{1}{4R\Theta}\frac{\partial T}{\partial r}\frac{\partial\Theta}{\partial r} + \frac{1}{4R\Phi}\frac{\partial T}{\partial r}\frac{\partial\Phi}{\partial r} + \frac{1}{4R\Theta}\frac{\partial T}{\partial\theta}\frac{\partial R}{\partial\theta} + \frac{1}{4\Theta\Phi}\frac{\partial T}{\partial\theta}\frac{\partial\Phi}{\partial\theta}\]

The Ricci \(R_{rr}\) Term

\[R_{rr} = \frac{\partial}{\partial r}\Gamma^\lambda_{r\lambda} - \frac{\partial}{\partial\lambda}\Gamma^\lambda_{rr} + \Gamma^\lambda_{r\eta}\Gamma^\eta_{r\lambda} - \Gamma^\lambda_{\lambda\eta}\Gamma^\eta_{rr}\]

Expand the first term.

\[\frac{\partial}{\partial r}\Gamma^\lambda_{r\lambda} = \frac{\partial}{\partial r}(\Gamma^t_{rt} + \Gamma^r_{rr} + \Gamma^\theta_{r\theta} + \Gamma^\phi_{r\phi}) = \frac{1}{2}\frac{\partial}{\partial r}\left( \frac{1}{T}\frac{\partial T}{\partial r} + \frac{1}{R}\frac{\partial R}{\partial r} + \frac{1}{\Theta}\frac{\partial \Theta}{\partial r} + \frac{1}{\Phi}\frac{\partial \Phi}{\partial r} \right) = \frac{1}{2}\left( \frac{1}{T}\frac{\partial^2 T}{\partial r^2} + \frac{1}{R}\frac{\partial^2 R}{\partial r^2} + \frac{1}{\Theta}\frac{\partial^2 \Theta}{\partial r^2} + \frac{1}{\Phi}\frac{\partial^2 \Phi}{\partial r^2} - \frac{1}{T^2}\left(\frac{\partial T}{\partial r}\right)^2 - \frac{1}{R^2}\left(\frac{\partial R}{\partial r}\right)^2 - \frac{1}{\Theta^2}\left(\frac{\partial \Theta}{\partial r}\right)^2 - \frac{1}{\Phi^2}\left(\frac{\partial \Phi}{\partial r}\right)^2 \right)\]

Expand the second term.

\[-\frac{\partial}{\partial\lambda}\Gamma^\lambda_{rr} = -\frac{\partial}{\partial r}\Gamma^r_{rr} - \frac{\partial}{\partial\theta}\Gamma^\theta_{rr} = -\frac{\partial}{\partial r}\left(\frac{1}{2R}\frac{\partial R}{\partial r}\right) + \frac{\partial}{\partial\theta}\left(\frac{1}{2\Theta}\frac{\partial R}{\partial\theta}\right) = \frac{1}{2}\left( -\frac{1}{R}\frac{\partial^2 R}{\partial r^2} + \frac{1}{\Theta}\frac{\partial^2 R}{\partial\theta^2} + \frac{1}{R^2}\left(\frac{\partial R}{\partial r}\right)^2 - \frac{1}{\Theta^2}\left(\frac{\partial R}{\partial\theta}\right)^2 \right)\]

Expand the third term.

\[\Gamma^\lambda_{r\eta}\Gamma^\eta_{r\lambda} = \left(\Gamma^t_{rt}\right)^2 + \left(\Gamma^r_{rr}\right)^2 + 2\Gamma^r_{r\theta}\Gamma^\theta_{rr} + \left(\Gamma^\theta_{r\theta}\right)^2 = \frac{1}{4}\left( \frac{1}{T^2}\left(\frac{\partial T}{\partial r}\right)^2 + \frac{1}{R^2}\left(\frac{\partial R}{\partial r}\right)^2 + \frac{1}{\Theta^2}\left(\frac{\partial\Theta}{\partial r}\right)^2 - \frac{2}{R\Theta}\left(\frac{\partial R}{\partial\theta}\right)^2 \right)\]

Expand the fourth term \(\eta\) terms.

\[-\Gamma^\lambda_{\lambda\eta}\Gamma^\eta_{rr} = -\Gamma^\lambda_{\lambda r}\Gamma^r_{rr} - \Gamma^\lambda_{\lambda\theta}\Gamma^\theta_{rr} = -(\Gamma^t_{tr} + \Gamma^r_{rr} + \Gamma^\theta_{\theta r} + \Gamma^\phi_{\phi r})\Gamma^r_{rr} - (\Gamma^t_{t\theta} + \Gamma^r_{r\theta} + \Gamma^\theta_{\theta\theta} + \Gamma^\phi_{\phi\theta})\Gamma^\theta_{rr} = \frac{1}{4R}\frac{\partial R}{\partial r}\left( \frac{1}{T}\frac{\partial T}{\partial r} + \frac{1}{R}\frac{\partial R}{\partial r} + \frac{1}{\Theta}\frac{\partial \Theta}{\partial r} + \frac{1}{\Phi}\frac{\partial\Phi}{\partial r} \right) - \frac{1}{4\Theta}\frac{\partial R}{\partial \theta}\left( \frac{1}{T}\frac{\partial T}{\partial \theta} + \frac{1}{R}\frac{\partial R}{\partial \theta} - \frac{1}{\Theta}\frac{\partial \Theta}{\partial \theta} + \frac{1}{\Phi}\frac{\partial\Phi}{\partial \theta} \right)\]

Combine the terms.

\[R_{rr} = \frac{1}{2T}\frac{\partial^2 T}{\partial r^2} + \frac{1}{2\Theta}\frac{\partial^2 \Theta}{\partial r^2} + \frac{1}{2\Phi}\frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{\Theta}\frac{\partial^2 R}{\partial\theta^2} - \frac{1}{4T^2}\left(\frac{\partial T}{\partial r}\right)^2 + \frac{1}{2R^2}\left(\frac{\partial R}{\partial r}\right)^2 - \frac{1}{4\Theta^2}\left(\frac{\partial\Theta}{\partial r}\right)^2 - \frac{1}{2\Phi^2}\left(\frac{\partial\Phi}{\partial r}\right)^2\]

Schwarzschild Outer Solution Revisited

We will revisit the Schwarzschild outer solution using the trace solution described. We have \(T = 0 \implies R = 0\). We have the unknown functions \(T(r)\) and \(R(r)\) and \(\Theta = -r^2\), \(\Phi = -r^2\sin^2\theta\).

Construct the Ricci tensor term \(R_{tt}\).

\[R_{tt} = \frac{1}{2R}\frac{\partial^2 T}{\partial r^2} + \frac{1}{2\Theta}\frac{\partial^2 T}{\partial\theta^2} - \frac{1}{4TR}\left(\frac{\partial T}{\partial r}\right)^2 - \frac{1}{4R^2}\frac{\partial T}{\partial r}\frac{\partial R}{\partial r} - \frac{1}{4T\Theta}\left(\frac{\partial T}{\partial \theta}\right)^2 - \frac{1}{4\Theta^2}\frac{\partial T}{\partial\theta}\frac{\partial\Theta}{\partial\theta} + \frac{1}{4R\Theta}\frac{\partial T}{\partial r}\frac{\partial\Theta}{\partial r} + \frac{1}{4R\Phi}\frac{\partial T}{\partial r}\frac{\partial\Phi}{\partial r} + \frac{1}{4R\Theta}\frac{\partial T}{\partial\theta}\frac{\partial R}{\partial\theta} + \frac{1}{4\Theta\Phi}\frac{\partial T}{\partial\theta}\frac{\partial\Phi}{\partial\theta}\]

Substitute the values for \(\Theta\) and \(\Phi\) and evaluate terms as \(T\) and \(R\) are independent of \(\theta\).

\[R_{tt} = \frac{1}{2R}\frac{\partial^2 T}{\partial r^2} - \frac{1}{4TR}\left(\frac{\partial T}{\partial r}\right)^2 - \frac{1}{4R^2}\frac{\partial T}{\partial r}\frac{\partial R}{\partial r} + \frac{1}{4Rr^2}\frac{\partial T}{\partial r}2r + \frac{1}{4Rr^2\sin^2\theta}\frac{\partial T}{\partial r}2r\sin^2\theta = \frac{1}{2R}\frac{\partial^2 T}{\partial r^2} - \frac{1}{4R}\left(\frac{1}{T}\frac{\partial T}{\partial r} + \frac{1}{R}\frac{\partial R}{\partial r}\right) + \frac{1}{rR}\frac{\partial T}{\partial r}\]

Ricci Tensor

As the functions are only dependent on \(r\) the partial derivatives become regular deriviatives.

\[R_{tt} = \frac{1}{2R}\frac{d^2T}{dr^2} - \frac{1}{4R}\left(\frac{1}{T}\frac{dT}{dr} + \frac{1}{R}\frac{dR}{dr}\right) + \frac{1}{rR}\frac{dT}{dr} = 0\]

Christoffel Symbols Trace Metric With Cross Term

Rotating solutions have a trace metric with a cross term \(g_{t\phi} = g_{\phi t} \ne 0\). This term will be a function of \(r\) and \(\theta\).

This complicates the inverse \(g^{\mu\nu}\)!

This adds Crhistoffel symbols in addition to the trace symbols.

For the \(t\) symbols, \(\lambda = \rho = t\).

\[\Gamma^t_{\mu\nu} = \frac{1}{2}g^{tt}\left(\frac{\partial g_{\mu t}}{\partial\nu} + \frac{\partial g_{\nu t}}{\partial\mu} - \frac{\partial g_{\mu\nu}}{\partial t}\right)\]

This has additional symbols for \((\mu = \phi, \nu = r)\), \((\mu = r, \nu = \phi)\), \((\mu = \phi, \nu = \theta)\), and \((\mu = \theta, \nu = \phi)\).

\[\Gamma^t_{\phi r} = \Gamma^t_{r\phi} = \frac{1}{2}g^{tt}\frac{\partial g_{\phi t}}{\partial r}\]
\[\Gamma^t_{\phi\theta} = \Gamma^t_{\theta\phi} = \frac{1}{2}g^{tt}\frac{\partial g_{\phi t}}{\partial\theta}\]

For the \(r\) symbols, \(\lambda = \rho = r\).

\[\Gamma^r_{\mu\nu} = \frac{1}{2}g^{rr}\left(\frac{\partial g_{\mu r}}{\partial\nu} + \frac{\partial g_{\nu r}}{\partial\mu} - \frac{\partial g_{\mu\nu}}{\partial r}\right)\]

This has additional symbols for \((\mu = \phi, \nu = t)\), and \((\mu = t, \nu = \phi)\).

\[\Gamma^r_{\phi t} = \Gamma^r_{t\phi} = -\frac{1}{2}g^{rr}\frac{\partial g_{\phi t}}{\partial r}\]

For the \(\theta\) symbols, \(\lambda = \rho = \theta\).

\[\Gamma^\theta_{\mu\nu} = \frac{1}{2}g^{\theta\theta}\left(\frac{\partial g_{\mu\theta}}{\partial\nu} + \frac{\partial g_{\nu\theta}}{\partial\mu} - \frac{\partial g_{\mu\nu}}{\partial\theta}\right)\]

This has additional symbols for \((\mu = \phi, \nu = t)\), and \((\mu = t, \nu = \phi)\).

\[\Gamma^\theta_{\phi t} = \Gamma^\theta_{t\phi} = -\frac{1}{2}g^{\theta\theta}\frac{\partial g_{\phi t}}{\partial\theta}\]

For the \(\phi\) symbols, \(\lambda = \rho = \phi\).

\[\Gamma^\phi_{\mu\nu} = \frac{1}{2}g^{\phi\phi}\left(\frac{\partial g_{\mu\phi}}{\partial\nu} + \frac{\partial g_{\nu\phi}}{\partial\mu} - \frac{\partial g_{\mu\nu}}{\partial\phi}\right)\]

This has additional symbols for \((\mu = t, \nu = r)\), \((\mu = r, \nu = t)\), \((\mu = t, \nu = \theta)\), and \((\mu = \theta, \nu = t)\).

\[\Gamma^\phi_{tr} = \Gamma^\phi_{rt} = \frac{1}{2}g^{\phi\phi}\frac{\partial g_{\phi t}}{\partial r}\]
\[\Gamma^\phi_{t\theta} = \Gamma^\phi_{\theta t} = \frac{1}{2}g^{\phi\phi}\frac{\partial g_{\phi t}}{\partial\theta}\]
Copyright (C) 2019 - 2026 Dr Phill Edwards, All Rights Reserved